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My take on statistical science

© Start with the question.
(Design your target trial)

@ Formalize the question in mathematical language.
(Define your estimand)

© Display the assumptions that are needed to identify your estimand.
(Present your identifiability conditions)

© Compute estimates of your estimands from your data.
(Do your estimation)

—> we never start the process by considering a regression model
(linear, logistic, Cox model, ..., whatever).
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Plan for today

@ More on SWIGs

Examples

time-varying treatment

Clarifications

Proof of simple g-formula.

D-separation, g-formula and hidden variables.
Minimal labelling.

Read off independencies.

@ Dynamic SWIGs.

@ Next time: Estimation
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SWIG in a conditional randomised experiment

—y)= Z P(Y? =y | L=1)P(L = I) factorization

= Z P(Y =y |A=a,L=1)P(L=1). modularity
i
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SWIG in an experiment with loss to follow-up (C)

A is treatment, C is censoring. The counterfactual outcome Y 2:¢=0 is the
outcome if we kept every individual uncensored (¢ = 0) under treatment a.

QR—&]lc=>  CreD
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and A denotes taking treatment.
Here, the counterfactual in the SWIG is the outcome had the patient taken
treatment a. The lack of an arrow from R to Y? encodes the assumption
that randomisation only causes the outcome through the treatment A.
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and A, denotes taking treatment at
time k € {0, 1}.
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and A, denotes taking treatment at
time k € {0, 1}.
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SWIG and independencies

These graphs illustrate minimal labelling (L7 = L;). The first graph is not

minimally labelled, but encodes the same information as the second graph which
is minimally labelled.
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SWIG criterion for identification of effects

Consider the observed random variables Ax, Lx, Y.

Definition (marginal g-formula)

The g-formula for the marginal of Y = Yk under treatment assignment
a=3ak = (ao,...,ak) is defined as

b(.y)_zpy’/K7‘9K)1_Ip/ ’lj 173_1 1)

Jj=0

where I = (lo, ..., lx), k < K, are instantiations of observed variables
Li = (Lo, ..., L), k < K.

We define variables indexed by subscript " —1", e.g. L_1, to be empty.
29

2Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor effect”;
Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of the
counterfactual and graphical approaches to causality”.
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Note on the term "causal interpretation”

If it is
@ A causal effect

@ Equal to a counterfactual outcome of interest
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Sufficient condition for identification

Theorem (ldentification of static regimes)

Consider an intervention that sets 3 = ax = (ao, - .., ax). Under positivity and

consistency, B
P(Y?=y) = bs(y)

if for k € {0,..., K}

Y3 AL I(Ak = ak) | Zk,zk_l = 5k—1~

This theorem follows from Robins®® and Richardson and Robins®, and is closely related
to the backdoor theorem of Pearl*2.
The theorem establishes when we can use the g-formula to identify causal effects.

30Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor effect”.

3Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of
the counterfactual and graphical approaches to causality”.

# Judea Pearl. “Causal diagrams for empirical research”. In: Biometrika 82.4 (1995),
pp. 669-688.
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Proof in a simple case

Consider the case with two treatments (Ao, A1) and a binary outcome
Y €{0,1}. Suppose that Y22 1l Ay and Y 1l Ay | L1, Ap = a0

E(Y® o) =E(Y®% | Ag = ag) exchangeability
=> E(Y*? | Ly = h, Ay = a0)p(h | a) LTOT
h

:ZE(YQO,EH | Al = a, L1 = /1,A0 = ao)p(11 I 30) exchangeability
h

:Z]E(Y | Ay = a1,L1 = h,A0 = ao)p(h | a0) consistency, positivity
h

O

v
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Comments to the g-formula

@ The independence condition in the identification theorem cannot be
read directly off of a SWIG. However, on the next slide we see how the
identification condition is implied by an independence in the SWIG.

@ Importantly, the g-formula allows identification in the presence of
unmeasured variables.
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Reading off independencies in SWIGs

Let H be a hidden (unmeasured) variable

We can read off Y20@1 1| AP | LT, Ag.

However, what we needed for using the g-formula is the independence
Ydo.a1 || A1 | Ll,Ao = 40-

Use consistency: AP | L, Ag = ag is equal to A | L1, Ag = ao, i.e.,
Yo il AR [ L2, Ag — Yoo 1L A | Ly, Ag = ao.
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Using the identification theorem

Thus, we can identify the expected counterfactual outcome under the
intervention that sets Ay = ag and A; = aj in the graph in Slide 167 as

E(Y*2) = "E(Y | Ay =a1,L1 = h, Ay = a0)P(L1 = h | Ao = o).
h

Note that we have identified the counterfactual as a function of only the
observed variables in the graph, even if there is a hidden variable H in the
graph.
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Additional SWIG

What is the g-formula? Compare to Figure 167. Indeed, the g-formula is
just a function of observed data distributions, but here we have no
guarantee that it does identify the causal estimand because the
identification conditions are violated.
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@ We have studied identification from an "all or nothing” perspective.
o We will later look at sensitivity analyses and bounds.

@ The identification assumptions we have studied are non-parametric
(PS: | consider this to be a feature, not a bug). We have not
considered other assumptions that also can be used to justify
identification, for example

e monotone effects.
e no effect modification.

@ We have not learned the graphical structure. On the other hand, we
have learned what we can infer from a given graphical structure;
heuristically, we encode what we know and believe in the graph, and
then we deduce what we can learn from this knowledge and
assupmtions.

e Learning the graphical structure itself from data is a very ambitious
task.

o In principle, the causal structure could be learned by doing a large
amount of experiments (I am not discussing this in more detail here).
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Hidden variables

o Importantly, the g-formula allows identification in the presence of
hidden variables.
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Q \ / w
L l
A > Y
@ A Drink a glass of red wine a day.
@ Y Nausea
@ L Aspirin
@ @ Family history of cardiovascular disease
o W Frequency of headache

Q: We measure Aspirin. Should we adjust for Aspirin in the analysis?
Draw the SWIG...

Mats Stensrud Randomisation and Causation Spring 2024 172 / 402



Section 17

Dynamic regimes
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Dynamic regimes

Definition (Dynamic regime)

A dynamic regime g = (go, . . ., gk), Where gi : (Ax_1, Lx) — Ay, is a
policy that assigns treaEment_(possiny at multiple time points) based on
the measured history (Ax_1, Lk).

We will restrict ourselves to settings where

8k - (Zk) —> Ak
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Dynamic regime SWIGs

Definition (d-SWIG from Robins and Richardson)
Given a template G(a) and a dynamic regime g for 3, the d-SWIG G(g) is
defined by applying the following transformation:
@ Replace each fixed node aj with a random node Af+ that inherits
children from a;. Include dashed directed edges from every variable
that is an input to the function g; that determines the variable A,ing.

@ Each random node V; that is a descendant of at least one variable
A‘;”+ is relabeled as VZ.
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Time-varying exposures (treatments) are frequent

Examples:
@ Smoking status, which depends on other events in life.

@ A therapeutic drug, for which the dose is adjusted according to the
response over time (patients take the drug every day, every week etc)

@ Cancer screening, which e.g. depends on previous diagnostic tests.

@ Surgical interventions (e.g. transplants) are given at a certain time
after the diagnosis.

@ Expression of genes.
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Running example: HIV

Consider a 5-year follow-up study of individuals infected with the human
immunodeficiency virus (HIV)33.

o Ay takes value 1 if the individual receives antiretroviral therapy in
month k, and 0 otherwise. Define A_1 = 0.

@ Suppose Y measures health status at 5 years of follow-up.

@ So far we have considered deterministic treatment rules, for example
"always treat”, where the outcome of interest is Y= vs " never
treat”, where the outcome of interest is Y2=0,

When A = Ak, we can define 2K such static regimes...

@ However, often we want to make dynamic treatment decisions.

o Let Ly € {0,1} be an indicator of low CD4 cell count measured at
month k.

@ Depending on the value of Ly, we may argue that it is good or bad to
start treatment at time k.

3Hernan and Robins, Causal inference: What if?
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Example of Dynamic Regime

A simple example of a dynamic regime g for setting with two treatments is
+
(] Ag = 40-
gt _ ja
o A7T = L7
In the HIV example this would mean that you are treated at time 1 if
the CD4 cell count is low at that time.
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Static vs dynamic

Y& 1L Ag and Y& 1L AP | L3, Ao.
Consistency gives: Y& 1L Ag and Y& 1L A | Lo, Ao = ao.
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|dentification results for dynamic regimes

@ We can use the same identification conditions (independencies in
Slide 164) as for static regimes, only if A4 is not a function of AJgJr

for j < k; that is, Aﬁ’L cannot be written a function of only L.
However, we need to use the extended g-formula as the identification
formula (as defined in Slide 186).

o if Af+ is a function of Ajf’rJr for any j < k, we need slightly stronger

conditions (we are not presenting them now). This is e.g. the case in
the graph in Slide 184 (due to the red arrow).
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