
Section 16

Lecture 5
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My take on statistical science

1 Start with the question.
(Design your target trial)

2 Formalize the question in mathematical language.
(Define your estimand)

3 Display the assumptions that are needed to identify your estimand.
(Present your identifiability conditions)

4 Compute estimates of your estimands from your data.
(Do your estimation)

=) we never start the process by considering a regression model
(linear, logistic, Cox model, ..., whatever).
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Plan for today

More on SWIGs
Examples
time-varying treatment
Clarifications
Proof of simple g-formula.
D-separation, g-formula and hidden variables.
Minimal labelling.
Read o↵ independencies.

Dynamic SWIGs.

Next time: Estimation
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SWIG in a conditional randomised experiment

L A Y A aL Y
a

P(Y a = y) =
X

l

P(Y a = y | L = l)P(L = l) factorization

=
X

l

P(Y = y | A = a, L = l)P(L = l). modularity
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SWIG in an experiment with loss to follow-up (C)

A is treatment, C is censoring. The counterfactual outcome Y
a,c=0 is the

outcome if we kept every individual uncensored (c = 0) under treatment a.

A C

L

Y

A a C
a

c = 0

L

Y
a,c=0
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and A denotes taking treatment.
Here, the counterfactual in the SWIG is the outcome had the patient taken
treatment a. The lack of an arrow from R to Y

a encodes the assumption
that randomisation only causes the outcome through the treatment A.

R A

L

Y A a

L

Y
a

R

Mats Stensrud Randomisation and Causation Spring 2024 158 / 402



SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and Ak denotes taking treatment at
time k 2 {0, 1}.

R A0 A1

L

Y

A0 a0 A
a0
1

a1

L

Y
a0,a1R

Lhy no arrow from R to Y ?
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SWIG in an experiment with imperfect adherence

R is the strategy that was assigned, and Ak denotes taking treatment at
time k 2 {0, 1}.

R A0 A1

L0 L1

Y

A0 a0 A
a0
1

a1

L0

Y
a0,a1

L
a0
1

R
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SWIG and independencies

These graphs illustrate minimal labelling (La0
1

= L1). The first graph is not
minimally labelled, but encodes the same information as the second graph which
is minimally labelled.

A0 a0 A
a0
1

a1

H

Y
a0,a1L

a0
1

A0 a0 A
a0
1

a1

H

Y
a0,a1L1
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SWIG criterion for identification of e↵ects

Consider the observed random variables AK , Lk ,Y .

Definition (marginal g-formula)

The g-formula for the marginal of Y ⌘ YK under treatment assignment
a = aK = (a0, . . . , aK ) is defined as

ba(y) =
X

lK

p(y | lK , aK )
KY

j=0

p(lj | l j�1, aj�1),

where lk = (l0, . . . , lk), k  K , are instantiations of observed variables
Lk = (L0, . . . , Lk), k  K .

We define variables indexed by subscript ”�1”, e.g. L�1, to be empty.
29

29Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor e↵ect”;
Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of the
counterfactual and graphical approaches to causality”.

Mats Stensrud Randomisation and Causation Spring 2024 162 / 402



Note on the term ”causal interpretation”

If it is

A causal e↵ect

Equal to a counterfactual outcome of interest
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Su�cient condition for identification

Theorem (Identification of static regimes)

Consider an intervention that sets a = aK = (a0, . . . , aK ). Under positivity and

consistency,

P(Y a = y) = ba(y)

if for k 2 {0, . . . ,K}

Y
a ?? I (Ak = ak) | Lk ,Ak�1 = ak�1.

This theorem follows from Robins30 and Richardson and Robins31, and is closely related
to the backdoor theorem of Pearl32.
The theorem establishes when we can use the g-formula to identify causal e↵ects.

30Robins, “A new approach to causal inference in mortality studies with a sustained
exposure period—application to control of the healthy worker survivor e↵ect”.

31Richardson and Robins, “Single world intervention graphs (SWIGs): A unification of
the counterfactual and graphical approaches to causality”.

32Judea Pearl. “Causal diagrams for empirical research”. In: Biometrika 82.4 (1995),
pp. 669–688.
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Proof in a simple case

Consider the case with two treatments (A0,A1) and a binary outcome
Y 2 {0, 1}. Suppose that Y a0,a1 ?? A0 and Y

a0,a1 ?? A1 | L1,A0 = a0

Proof.

E(Y a0,a1) =E(Y a0,a1 | A0 = a0) exchangeability

=
X

l1

E(Y a0,a1 | L1 = l1,A0 = a0)p(l1 | a0) LTOT

=
X

l1

E(Y a0,a1 | A1 = a1, L1 = l1,A0 = a0)p(l1 | a0) exchangeability

=
X

l1

E(Y | A1 = a1, L1 = l1,A0 = a0)p(l1 | a0) consistency, positivity
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Comments to the g-formula

The independence condition in the identification theorem cannot be
read directly o↵ of a SWIG. However, on the next slide we see how the
identification condition is implied by an independence in the SWIG.

Importantly, the g-formula allows identification in the presence of
unmeasured variables.
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Reading o↵ independencies in SWIGs

Let H be a hidden (unmeasured) variable

A0 a0 A
a0
1

a1

H

Y
a0,a1L

a0
1

We can read o↵ Y
a0,a1 ?? A

a0
1

| La0
1
,A0.

However, what we needed for using the g-formula is the independence
Y

a0,a1 ?? A1 | L1,A0 = a0.
Use consistency: Aa0

1
| La0

1
,A0 = a0 is equal to A1 | L1,A0 = a0, i.e.,

Y
a0,a1 ?? A

a0
1

| La0
1
,A0 =) Y

a0,a1 ?? A1 | L1,A0 = a0.
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Using the identification theorem

Thus, we can identify the expected counterfactual outcome under the
intervention that sets A0 = a0 and A1 = a1 in the graph in Slide 167 as

E(Y a0,a1) =
X

l1

E(Y | A1 = a1, L1 = l1,A0 = a0)P(L1 = l1 | A0 = a0).

Note that we have identified the counterfactual as a function of only the
observed variables in the graph, even if there is a hidden variable H in the
graph.
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Additional SWIG

A0 a0 A
a0
1

a1

H1 H2

Y
a0,a1L

a0
1

What is the g-formula? Compare to Figure 167. Indeed, the g-formula is
just a function of observed data distributions, but here we have no
guarantee that it does identify the causal estimand because the
identification conditions are violated.
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Some insights

We have studied identification from an ”all or nothing” perspective.
We will later look at sensitivity analyses and bounds.

The identification assumptions we have studied are non-parametric
(PS: I consider this to be a feature, not a bug). We have not
considered other assumptions that also can be used to justify
identification, for example

monotone e↵ects.
no e↵ect modification.

We have not learned the graphical structure. On the other hand, we
have learned what we can infer from a given graphical structure;
heuristically, we encode what we know and believe in the graph, and
then we deduce what we can learn from this knowledge and
assupmtions.

Learning the graphical structure itself from data is a very ambitious
task.
In principle, the causal structure could be learned by doing a large
amount of experiments (I am not discussing this in more detail here).
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Hidden variables

Importantly, the g-formula allows identification in the presence of
hidden variables.
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Berkson bias

A

L

Y

Q W

A Drink a glass of red wine a day.

Y Nausea

L Aspirin

Q Family history of cardiovascular disease

W Frequency of headache

Q: We measure Aspirin. Should we adjust for Aspirin in the analysis?
Draw the SWIG...
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Section 17

Dynamic regimes
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Dynamic regimes

Definition (Dynamic regime)

A dynamic regime g = (g0, . . . , gk), where gk : (Ak�1, Lk) 7! Ak , is a
policy that assigns treatment (possibly at multiple time points) based on
the measured history (Ak�1, Lk).

We will restrict ourselves to settings where

gk : (Lk) 7! Ak

.
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Dynamic regime SWIGs

Definition (d-SWIG from Robins and Richardson)

Given a template G(a) and a dynamic regime g for a, the d-SWIG G(g) is
defined by applying the following transformation:

Replace each fixed node aj with a random node A
g+
j that inherits

children from aj . Include dashed directed edges from every variable
that is an input to the function gi that determines the variable A

g+
i .

Each random node Vi that is a descendant of at least one variable
A
g+
i is relabeled as V g

i .
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Time-varying exposures (treatments) are frequent

Examples:

Smoking status, which depends on other events in life.

A therapeutic drug, for which the dose is adjusted according to the
response over time (patients take the drug every day, every week etc)

Cancer screening, which e.g. depends on previous diagnostic tests.

Surgical interventions (e.g. transplants) are given at a certain time
after the diagnosis.

Expression of genes.
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Running example: HIV

Consider a 5-year follow-up study of individuals infected with the human
immunodeficiency virus (HIV)33.

Ak takes value 1 if the individual receives antiretroviral therapy in
month k , and 0 otherwise. Define A�1 = 0.

Suppose Y measures health status at 5 years of follow-up.

So far we have considered deterministic treatment rules, for example
”always treat”, where the outcome of interest is Y a=1 vs ”never
treat”, where the outcome of interest is Y a=0.
When A ⌘ AK , we can define 2K such static regimes...

However, often we want to make dynamic treatment decisions.

Let Lk 2 {0, 1} be an indicator of low CD4 cell count measured at
month k .

Depending on the value of Lk , we may argue that it is good or bad to
start treatment at time k .

33Hernan and Robins, Causal inference: What if?
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Example of Dynamic Regime

A simple example of a dynamic regime g for setting with two treatments is

A
g+
0

= a0.

A
g+
1

= L
a0
1

In the HIV example this would mean that you are treated at time 1 if
the CD4 cell count is low at that time.
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Static vs dynamic

A0 a0 A
a0
1

a1

L
a0

Y
a0,a1

H

Y
a0,a1 ?? A0 and Y

a0,a1 ?? A
a0
1

| La0
0
,A0.

A0 a0 A
g
1

A
g+
1

L
a0

Y
g

H

Y
g ?? A0 and Y

g ?? A
a0
1

| La0
0
,A0.

Consistency gives: Y g ?? A0 and Y
g ?? A1 | L0,A0 = a0.
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Identification results for dynamic regimes

We can use the same identification conditions (independencies in
Slide 164) as for static regimes, only if Ag+

k is not a function of Ag+
j

for j < k ; that is, Ag+
k cannot be written a function of only Lk .

However, we need to use the extended g-formula as the identification
formula (as defined in Slide 186).

if Ag+
k is a function of Ag+

j for any j < k , we need slightly stronger
conditions (we are not presenting them now). This is e.g. the case in
the graph in Slide 184 (due to the red arrow).
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